方差分析的方法

方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”或“F检验”,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。

根据资料设计类型的不同,方差分析的方法分为以下两种:

  • 1、对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。
  • 2、对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。

两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。

整个方差分析的基本步骤如下:

  • 1、建立检验假设。
  • H0:多个样本总体均数相等;
    H1:多个样本总体均数不相等或不全等。
      检验水准为0.05。
  • 2、计算检验统计量F值。
  • 3、确定P值并做出推断结果。

在统计学中,方差分析(ANOVA)是一系列统计模型及其相关的过程总称,其中某一变量的方差可以分解为归属于不同变量来源的部分。其中最简单的方式中,方差分析的统计测试能够说明几组数据的平均值是否相等,因此得到两组的t测试。在做多组双变量t测试的时候,错误的几率会越来越大,特别是I型错误。因此,方差分析只在二到四组平均值的时候比较有效。

从质量到卓越的第一步

下一步